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Abstract

Having a rich acoustic oscillation spectrum makes solar-like stars particularly interesting for
studying fluid-dynamical aspects of the stellar interior. I present some of the recent progress
in formulating the physical processes that drive the acoustic oscillations to the observed
amplitudes via their coupling with the turbulent velocity field in the outer convectively unstable
stellar layers. I shall also discuss some asteroseismic diagnostic techniques that allow us to
measure some of the gross stellar properties derived from a seismic signature contained in the
variation of the large frequency separation of measured low-degree acoustic modes.

Introduction

Solar-type stars possess extended surface convection zones. The observed oscillation modes
generally behave as acoustic modes and their frequencies are sensitive predominantly to the
sound speed in the stellar interior. It appears that all possible oscillation modes are intrinsi-
cally stable. They are excited stochastically by the strong emission of acoustic noise by the
turbulent velocity field in the upper convectively unstable layers of the star. The excitation
occurs in a broad frequency range, giving rise to a rich pulsation spectrum. The amplitudes
of the oscillations are small, typically 5 ppm L�/M� (Kjeldsen & Bedding 1995), allowing
us to describe the pulsations with linear theory.

Only modes of low degree can be observed. The diagnostic properties of this type of mode
have been studied extensively in the solar case. From asymptotic theory we find for the cyclic
oscillation frequencies νn,� with radial order n and spherical degree 
 (Gough 1986, see also
Tassoul 1980)

νn,� � (n + 
/2 + α) ν0 + εn,� , (1)

where ν0 =
h
2

R R
0 dr/c

i−1
is the inverse of twice the sound travel time between the centre

and surface (R is surface radius), and α is a constant. The value of ν0 can be estimated
from taking the average (over n and 
) of the so-called large frequency separation νn,� ≡
νn,� − νn−1,�. The correction term εn,� lifts the degeneracy between modes with the same
value of n+ 
/2 and leads to the so-called small frequency separation δνn,� ≡ νn,� −νn−1,�+2.
This frequency structure is illustrated in Fig. 1 for a solar spectrum. The small frequency
separation is predominantly determined by the acoustic sound speed in the stellar core and
hence is sensitive to the chemical composition there and consequently is an indicator for the
stellar age (e.g., Gough 2001).

Oscillation amplitudes

In the Sun and other solar-like oscillators mode stability is governed not only by the pertur-
bations in the radiative fluxes (i.e., via the κ-mechanism) but also by the perturbations in
the turbulent fluxes (heat and momentum). The study of mode stability therefore demands
a theory for convection that includes the interaction of the turbulent velocity field with the
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Figure 1: Small section of a solar acoustic power spectrum. The radial order n and spherical degree �
are indicated in pairs of (n,�) for each mode. The large and small frequency separations, Δνn,� and δνn,�

are in general functions of n and � and can be used to infer the mass and age of a star (adapted from
Christensen-Dalsgaard 2001).

pulsation. It appears that in solar-like stars all possible modes of oscillation are stable; thus,
if a given oscillation is somehow excited, it will be damped over a finite time, typically of the
order of days to months, the inverse of which is the damping rate η. The power spectrum
(Fig. 1) can be described in terms of an ensemble of intrinsically damped, stochastically driven,
simple-harmonic oscillators, provided that the background equilibrium state of the star were
independent of time. In that case the mode profile is essentially Lorentzian, and the intrinsic
damping rates of the modes could then be determined observationally from measurements of
the pulsation linewidths. The other fundamental quantity that any full description of mode
excitation must model is the energy supply rate, P, which is sometimes called the acoustic
noise generation rate. The observed velocity signal v(t) = dξ/dt (where ξ(t) is the surface
displacement of the damped, stochastically driven, harmonic oscillator) can then be related
to the modelled energy supply rate P by taking the Fourier transformation of the harmonic
oscillator followed by an integration over frequency to obtain the total mean energy E in
a particular pulsation mode with inertia I (e.g., Chaplin et al. 2005, Houdek 2006). The
squared surface rms velocity is then given by

V 2 :=
E

I =
P

2η I =
1

2
ηH , (2)

where the height H (in cm2 s−2Hz−1) is the maximum of the discrete power, i.e. the integral
of power spectral density over a frequency bin. As such, it is not the total integrated power,
V 2, that is observed directly, but rather the power spectral density (Chaplin et al. 2005). The
excitation process can be regarded as multipole acoustic radiation (Lighthill 1952). Acoustic
radiation by turbulent multipole sources in the context of stellar aerodynamics has been
considered by various authors (for a recent review see Houdek 2006). Here we follow the
procedure by Chaplin et al. 2005, who derived the following expression for estimating the
energy supply rate arising from the fluctuating Reynolds stresses PR (another contribution
comes from the fluctuating gas pressure Pg, i.e. the total energy supply rate P = PR + Pg;
here we neglect Pg):
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Figure 2: Reynolds stress as a function of the depth variable z = R� − r for various solar models. Results
are shown for the non-local mixing-length model (solid curve) and from hydrodynamical simulations by
Trampedach et al. (1999, dashed curve) and Ludwig (2005, dot-dashed curve).

PR =
π

9I
Z R

0
l 3

„
ΦΨrp t

∂ξr

∂r

«2

S(r ; ν) dr , (3)

where l is the mixing length, p t is the (r , r)-component of the Reynolds stress, and ξr is the
normalized radial component of the displacement vector. The spectral function S accounts for

contributions to P from the small-scale turbulence. The parameter Ψ = [2Φ/3(Φ − 1)]1/2 is
unity for isotropic turbulence (Chaplin et al. 2005) and is obtained from a consistent kinematic
transformation of the turbulent velocity correlation 〈uu〉 (angular brackets denote an ensemble
average) in the Boussinesq-quasi-normal approximation, where Φ = 〈u ·u〉/〈u2

3 〉 describes the
anisotropy of the turbulent velocity field u = (u1, u2, u3).

The relative (r , r)-component of the Reynolds stress p t/p = 〈ρu2
3〉/p (ρ is density and p

is the total pressure) is compared with hydrodynamical simulations in Fig. 2. The Reynolds
stress of the non-local mixing-length model shows a narrow peak near the depth z � 120 km
and falls off more rapidly with z than the results from both hydrodynamical simulations. This
contributes to make the energy supply rate for the mixing-length model smaller than that
from the hydrodynamical simulations, and consequently the modelled heights H need to be
scaled with a scaling factor > 1 in order to reproduce the observed values of the mode peak
heights (Chaplin et al. 2005). With a model for P and estimates for η from nonadiabatic
pulsation calculations the oscillation amplitude V is obtained from Eq. (2).

Fairly accurate measurements of solar-like oscillation amplitudes in other stars are available
today from ground based observations (see Bedding & Kjeldsen 2007). Results for models of
αCen A and for the sub-giant ξ Hydrae are illustrated in Fig. 3. Bedding et al. (2004) reported
mode lifetimes for α Cen A between 1–2 days which are in reasonable agreement with the
theoretical estimates of about 1.7 days for the most prominent modes (the mode lifetime
τ=η−1; see lower left panel of Fig. 3). For ξ Hydrae, however, the theoretical mode lifetimes
of the most prominent modes are τ � 17 days which are in stark contrast to the measured
values of about 2–3 days by Stello et al. (2006), yet the estimated velocity amplitudes are in
almost perfect agreement with the observations by Frandsen et al. (2002).
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Figure 3: Predicted apparent velocity amplitudes (defined to be
√

2 times the rms value V , top) and
damping rates (bottom) of radial acoustic modes for models of α Cen A (left) and ξ Hydrae (right).

The predicted maximum velocity amplitudes for various solar-like stars are compared in
Fig. 4 with recently performed observations. For the cooler stars the theoretical results are
in reasonable agreement with the observations. For the rather hotter star Procyon, however,
the theoretical velocity amplitudes are severely overestimated. The dotted line is the scaling
law by Kjeldsen & Bedding (1995), and the dashed line is the scaling relation reported by
Samadi et al. (2005) using the convective velocity profiles from numerical simulations (Stein
& Nordlund 2001), and the theoretical damping rates from Houdek et al. (1999). For hotter
stars they find better agreement with observations. It is, however, interesting to note that the
numerical simulations by Stein et al. (2004) show for hotter stars partial cancellation between
the two excitation sources, PR and Pg, arising from the fluctuating Reynolds stresses and
gas pressure (buoyancy force) respectively. On average, this results in a total energy supply
rate that is smaller by a factor of about two than the energy supply rate from the turbulent
pressure fluctuations alone. One is therefore tempted to argue that the overestimated values
of the modelled energy supply rate P in Procyon could be partially attributed to having
neglected the gas pressure fluctuations in Eq. (2) and in particular its cancellation with the
turbulent pressure fluctuations. By adopting the simulated results by Stein et al. (2004)
of the energy supply rate P for Procyon the velocity amplitude is reduced by a factor of
about

√
2 (indicated by the dot-dashed vertical line in Fig. 4). This suggests, according to

Eq. (2), that the remaining factor of about 1.8, which is necessary to make the estimated
velocity amplitude agree with the observed value (dotted vertical line), can be predominantly
attributed to the underestimation of the linear damping rates η (see Houdek 2006).

The signature of helium ionization

Abrupt variation in the stratification of a star (relative to the scale of the inverse radial
wavenumber of a seismic mode of oscillation), such as that resulting from the (smooth, albeit
acoustically relatively abrupt) depression in the first adiabatic exponent γ = (∂ln p/∂ln ρ)s

caused by the ionization of helium, where p, ρ and s are pressure, density and specific entropy,
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Figure 4: Predicted velocity amplitudes (in solar units) as function of light-to-mass ratio for stochastically
excited oscillations in other stars. Observations from several authors are plotted by the plus and triangle
symbols. Theoretical estimates are plotted as diamond symbols. The dot-dashed vertical line indicates the
reduction of the Procyon amplitude by a factor of

√
2 if the energy supply rate P of Stein et al. (2004)

is assumed; the vertical dotted line indicates the remaining factor of about 1.8 by which the theoretical
amplitude estimate according to Eq. (2) is still in error with the observations.

or from the sharp transition from radiative to convective heat transport at the base of the
convection zone, induces small-amplitude oscillatory components (with respect to frequency)
in the spacing of the cyclic eigenfrequencies νn,� of seismic oscillation and consequently also
in Δνn,� and δνn,�. We call such abrupt variations an acoustic glitch. One might hope
that the variation of the sound speed c induced by helium ionization might enable one to
determine from the low-degree eigenfrequencies a measure that is directly related to, perhaps
even almost proportional to, the helium abundance, with little contamination from other
properties of the structure of the star.

A convenient and easily evaluated measure of the oscillatory component produced by
acoustic glitches is the second multiplet-frequency difference with respect to order n amongst
modes of like degree 
:

Δ2νn,� ≡ νn−1,� − 2νn,� + νn+1,� (4)

(Gough 1990). Any localized region of rapid variation of either the sound speed c or the
density scale height, or a spatial derivative of them, induces an oscillatory component in Δ2ν
with a ‘cyclic frequency’ approximately equal to twice the acoustic depth

τ =

Z R

rglitch

c−1 dr (5)

of the glitch, and with an amplitude which depends on the amplitude of the glitch and which
decays with ν once the inverse radial wavenumber of the mode becomes comparable with or
less than the radial extent of the glitch.

Various approximate formulae for the oscillatory components that are associated with the
helium ionization have been suggested and used, by e.g., Basu et al. (1994, 2004), Monteiro
& Thompson (1998, 2005) and Gough (2002), not all of which are derived directly from
explicit acoustic glitches. Gough used an analytic function for modelling the dip in the
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first adiabatic exponent. In contrast, Monteiro & Thompson assumed a triangular form.
Basu et al. have adopted a seismic signature for helium ionization that is similar to that
arising from a single discontinuity; the artificial discontinuities in the sound speed and its
derivatives that this and the triangular representations possess cause the amplitude of the
oscillatory signal to decay with frequency too gradually, although that deficiency may not be
immediately noticeable within the limited frequency range in which adequate asteroseismic
data are or will imminently be available. More recently Houdek & Gough (2007) proposed
a seismic diagnostic in which the variation of γ in the helium ionization zone is represented
with a pair of Gaussian functions. This correctly results in a decay of the amplitude of
the seismic signature with oscillation frequency that is faster than that which the triangular
and the single-discontinuity approximations imply, and also takes some account of the two
ionization states of helium. Moreover, Houdek & Gough (2007) incorporated the acoustic
cutoff frequency into the variation of the eigenfunction phase with acoustic depth, thereby
improving the discrepancy between the seismically inferred depths of the acoustic glitches
and that of a corresponding stellar model. In particular these authors suggest the following
seismic diagnostic for the oscillatory component associated with helium ionization

δoscν � −ΓIIν0

ˆ
ν + 1

2
(m + 1)ν0

˜ `
μβκ−1

I e−8π2μ2κ2
I Δ2

IIν
2

cos 2ψI

+ κ−1
II e−8π2κ2

IIΔ
2
IIν

2
cos 2ψII

´
, (6)

in which the dominant glitch term δγ/γ in the helium ionization zone is represented by a pair
of (negative) Gaussian functions of acoustic depth τ , with widths ΔI and ΔII, whose integrals
are ΓI and ΓII, and which are centred about the acoustic depths τI and τII of the first and
second ionization zones of helium beneath the seismic surface r = R of the star. The phases
ψI = ψ(τ̃I) and ψII = ψ(τ̃II), where ωτ̃ = ωτ + εII (ω = 2πν), are evaluated by representing
the envelope by a plane-parallel polytrope of index m = 3.5 and adding a phase constant εII

to ωτ to account for the deviation of the actual envelope from the polytrope:

ψ(τ) = ωτκ− (m + 1) cos−1

„
m + 1

ωτ

«
+
π

4
. (7)

In Eq. (7), κI = κ(τ̃I) etc, with κ(τ) = [1−(m+1)2/4π2ν2τ2]1/2. The ratios β = ΓIΔII/ΓIIΔI,
μ = ΔI/ΔII and τI/τII hardly vary amongst stellar models whose masses and radii vary by
factors of at least five. To complete the description of Δ2ν an oscillatory contribution with
amplitude Ac (and phase constant εc) from the near discontinuity in the density scale height
at the base τc of the convection zone is added. It is then straightforward to evaluate the
second difference Δ2ν, to which must be added a smooth term which is represented by a
third-degree polynomial in ν−1:

Δ2,sm =
3X

i=0

aiν
−i . (8)

The eleven parameters ΓII, Ac, ΔII, τII, τc, εII, εc and ai are adjusted to fit by least squares the
theoretical curve to the second frequency differences of the actual eigenfrequencies of the
modes.

The top panel of Fig. 5 shows second differences Δ2ν (symbols), defined by Eq. (4), of low-
degree solar frequencies with 
=0,1,2 and 3, obtained from BiSON (Basu et al. 2007). The
solid curve is the seismic diagnostic (6)–(8), whose eleven parameters have been adjusted to
fit the data by least squares. The values so obtained for the acoustic depth of the centre of the
He II ionization zone is τII � 819 s and the value for the magnitude of the relative depression
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Figure 5: Top: the symbols (with error bars) are second differences Δ2ν (Eq. (4)) of low-degree solar
frequencies from BiSON (Basu et al. 2007). The solid curve is the diagnostic by Houdek & Gough (2007)
which has been fitted to the data by least squares. The dashed curve represents the smooth contribution
of the seismic diagnostic. Bottom: individual (oscillatory) contributions of the seismic diagnostic. The
solid curve is the He II contribution, the dotted curve the He I contribution and the dot-dashed curve is the
contribution from the base of the convection zone.

of γ is −δγ/γ|τII � 0.047. The lower panel of Fig. 5 displays the individual oscillatory
contributions from the two ionization stages of helium and from the sharp transition from
radiative to convective heat transport at the base of the convection zone.

Such seismic signatures complicate the measurement of the small frequency separation
δνn,� which, in general, is used for calibrating stellar models to obtain their ages and initial
helium abundances. There is good reason to expect that by considering this oscillatory
signature in the calibration process a substantial improvement will be made for determining
stellar ages (e.g., Gough 2001).
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DISCUSSION

Kupka: You mentioned that there may be some physics missing in the prediction of the mode
amplitudes. I guess that in any of your models there is nothing that expresses the asymmetries
between up- and downflows?

Houdek: It is possible that the effect of acoustic wave scattering on mode damping plays
an important role and consequently also on the mode amplitudes. The asymmetries between
up- and downflows of the turbulent velocity field could also be important but I don’t know
to which extent. It would require a convection formulation that goes beyond the Boussinesq
approximation.

Kupka: A short comment about Procyon: I believe that you are aware that there is
disagreement between the simulations by the Yale group and by H.-G. Ludwig, for example,
so we should be more careful with the simulations as compared to the solar case.

Houdek: Yes.
Roxburgh: A word of caution is needed, in the sense that the precision on the solar

frequencies is much better than we are ever likely to get for other stars, at least in the near
future. Therefore some of the things you are talking about are not realistic when applied
to data from satellites as well as from the ground. The other point I would like to make is
that you said nothing about the interior structure, but even with data that are worse than
for instance the ones from BiSON, with precisions of the order of 0.1 - 0.2 μHz you can still
make inversions to get the interior structure.

Günter Houdek and Douglas Gough - still discussing solar-like oscillations?




